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Abstract
We address the question of collective excitations in two-dimensional (2D)
dipolar systems. The main issue is that such systems have no Hartree
and no random-phase-approximation (RPA) limits and calculations have to
include particle correlations from the outset. We focus on the longitudinal
collective mode representing the density oscillations of the dipoles and on the
transverse collective mode representing shear waves. Our theoretical approach
is based on the quasi-localized charge approximation (QLCA) adapted to
point-dipole systems interacting through a 1/r3 potential. Our analytical
calculation is accompanied by classical molecular dynamics (MD) simulation.
At long wavelengths, the longitudinal and transverse collective excitations
exhibit acoustic behaviors with phase velocities that vary linearly with the
dipole strength and are wholly maintained by particle correlations. At finite
wavenumbers, the mode dispersion resulting from our classical MD simulations
shows a roton-like behavior. Comparison with the quantum Monte Carlo
dispersion generated through the Feynman relation (Astrakharchik et al 2007
Phys. Rev. Lett. 98 060405) shows a remarkably good quantitative agreement
between the two.
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1. Introduction

The two-dimensional (2D) point-dipole system (2DDS), where the particles interact via a 1/r3

potential, is receiving a great deal of attention these days, primarily because it can serve as a
useful model for the closely spaced electron–hole bilayer (EHB) in its excitonic phase [1–4],
and because the 2DDS is a fascinating system in and of itself. The system can be described as
a collection of N point dipoles, each of mass m = me + mh, occupying the large but bounded
area A; n = N/A is the average density. The dipoles are free to move in the xy-plane with
dipolar moment oriented in the z-direction. The interaction potential is accordingly given by
φD(r) = p2/r3, where p is the electric dipole strength. The coupling strength in the 2DDS
is characterized at arbitrary degeneracy by �̃D = p2/a3 〈Ekin〉, which, with 〈Ekin〉 = 1/β,
becomes �D = βp2/a3 in the high-temperature classical domain; a = 1/

√
πn is the average

inter-particle distance and β−1 = kBT is the thermal energy. Note that at zero temperature,
〈Ekin〉 = 〈P 2/2m〉 = h̄2/2ma2 and �̃D = 2rD = 2r0/a is the appropriate measure of the
coupling strength; the characteristic length r0 = mp2/h̄2 is the dipole equivalent of the Bohr
radius. Here we focus on the strong coupling regime �D � 1 in the classical domain. In
section 3, where we compare our MD-generated dispersion data with those generated from
the quantum MC simulations of [5], the correspondence is taken to be �D ⇔ rD .

The approximation that replaces the bound electron–hole excitons in the EHB by the 2DDS
model has been considered by a number of investigators [5–8] and most recently by the authors
[9] in a combined analytical/molecular dynamics (MD) study of collective excitations in the
strongly coupled 2DDS. The main findings of this work can be summarized as follows: (i) the
2DDS acoustic phase velocity is very nearly identical to that of the EHB in-phase mode in its
strongly coupled excitonic liquid phase [4]. (ii) The architecture of the 2DDS acoustic phase
velocity, which is wholly maintained by particle correlations, is formally invariant over the
entire classical to quantum domains all the way down to zero temperature; the corresponding
acoustic dispersion is calculated in the quasi-localized charge approximation (QLCA) [10] as

ω2(q → 0) = 33

16
ω2

Dq̄2J (�̃D), (1)

J (�̃D) =
∫

d2r̄
1

r̄3
g(r) =

∫ ∞

0
dr̄

1

r̄2
g(r̄) (2)

(q̄ = qa, r̄ = r/a, ωD =
√

2πnp2/ma3 is a characteristic dipole oscillation frequency,
and g(r̄) is the pair distribution function). (iii) The theoretical values of the acoustic phase
velocity inferred from equations (1) and (2), as a function of coupling strength, are in very good
agreement both with the MD data and with the corresponding values of the thermodynamic
sound speed in the classical and zero-temperature quantum domains.

It should be emphasized that the very fact that the dispersion is acoustic is not a
trivial conclusion: claims based on seemingly reasonable assumptions have led to erroneous
[ω(q → 0) ∝ q3/2] results [11].

The convergence of the J (�̃D) integral (2) is guaranteed by observing that g(r̄ →
0) ∝ exp(−�D/r̄3) at high temperatures and g(r̄ → 0) ∝ √

r̄/rD exp(−4
√

rD/r̄) at zero
temperature [9]; at large r̄ , with g(r̄ → ∞) → 1, the integrand drops off as 1/r̄2.

As already pointed out in [9], the appearance of the pair distribution function g(r) in
equation (2) is crucial. The 2DDS with its 1/r3 dipole potential, because of its r → 0 strong
singularity, admits neither a Hartree limit nor a random-phase approximation (RPA) description
of the collective excitations. Hence, the longitudinal density and transverse current response
functions can be calculated only through the introduction of correlations in the formalism,
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vis-à-vis the pair distribution function g(r), from the outset. This is why it is required to rely
on a nonperturbative calculational method, such as QLCA equation (2). Thus, any attempt to
recover the RPA limit by asserting that g(r̄) can be set equal to unity in (2) for all r̄ is an act
of futility since it would result in a divergent average Hartree field.

The goal of this paper is to extend the long-wavelength analysis of [9] both to the analysis
of the longitudinal dipole density oscillation mode at finite wave numbers and to the analysis of
the transverse shear mode dispersion. We propose to calculate the collective mode dispersion
by invoking the QLCA developed some time ago by Kalman and Golden [10] for a variety of
strongly coupled charged-particle systems and subsequently adapted to the 2DDS [9]. Here,
our combined QLCA/MD treatment will be entirely classical. However, as far as collective
excitations are concerned, it is expected that the classical treatment at least qualitatively
provides a reasonably good description of the collective mode dispersion of the 2DDS liquid
phase at arbitrary degeneracy. As we will see later in this paper, this expectation is borne out
by the close agreement between our classical MD dispersion data and those generated from
the Feynman relation with input of quantum Monte Carlo (MC) static structure factor data [5].

In section 2 we formulate the QLCA tensorial equation of motion and from it the general
formulae for the longitudinal and transverse collective mode dispersion in a strongly coupled
2D classical dipole liquid. In section 3, we analyze the 2DDS dispersion at finite wavenumbers
making comparisons between our own classical MD-generated dispersion data and those
generated from quantum MC structure factor data via the Feynman relation [5]; we also
compare our MD dispersion data with sample QLCA longitudinal dispersion curves. In
section 4, we display a sample QLCA transverse shear mode dispersion curve, and we compare
it with the corresponding classical MD data. Conclusions are drawn in section 5.

As to representing the behavior of the quantum system through a classical simulation,
there remains one open question, namely, whether the formation of a Bose–Einstein condensate
would affect the mode dispersion. That this may indeed be the case is known from the
Bogoliubov analysis of the excitation spectrum of weakly interacting bosons. Here, however,
the condensate fraction can be considered to be negligibly small since strong dipole–dipole
correlations tend to destroy coherence. This observation is borne out by the quantum MC
simulation of [5].

2. QLCA formalism and collective mode formulae

Over the years, the QLCA method has been successfully applied to a variety of strongly coupled
charged-particle systems. Here we follow the paradigm of the original derivation, focusing
on the differences that distinguish the point-dipole system from a system of point charged
particles. Similarly to what has been established for charged-particle systems, the observation
that serves as the basis of the QLC theory is that the dominating feature of the physical state of
a classical dipolar liquid with coupling parameter �D = βp2/a3 � 1 is the quasi-localization
of the point dipoles. The ensuing model closely resembles a disordered solid where the
dipoles occupy randomly located sites and undergo small-amplitude oscillations about them.
However, the site positions also change and a continuous rearrangement of the underlying
quasi-equilibrium configuration takes place. Inherent in the model is the assumption that
the two time scales are well separated and that it is sufficient to consider the time average
(converted into ensemble average) of the drifting quasi-equilibrium configuration.

The steps leading to the QLCA equation of motion for the 2DDS are detailed in [9] and
it suffices to quote the result here

[ω2δμν − Cμν(q)]ξq,ν(ω) = − n√
mN

F ext
μ (q, ω), (3)
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where the dynamical tensor Cμν(q) is given by

Cμν(q) = 3np2

m

∫
d2r

1

r5
g(r)[exp(iq · r) − 1]

[
δμν − 5

rμrν

r2

]
; (4)

F ext
μ (q, t) is a weak external force, and the Fourier representation

ξi,μ(t) = 1√
mN

∑
q

ξq,μ(t) exp(iq · xi ) (5)

links the collective coordinates ξq(t) to the perturbed amplitude ξi(t) of the small excursion of
the ith particle about its equilibrium quasi-site position xi . The longitudinal (L) and transverse
(T) elements of the dynamical tensor (4) are readily calculated to be

CL(q) = 3

2
ω2

D

∫ ∞

0
dr̄

1

r̄4
g(r̄) [3 − 3J0(qr) + 5J2(qr)], (6)

CT (q) = 3

2
ω2

D

∫ ∞

0
dr̄

1

r̄4
g(r̄) [3 − 3J0(qr) − 5J2(qr)]. (7)

The collective oscillation mode frequencies

ω2
L(q) = CL(q), (8)

ω2
T (q) = CT (q) (9)

readily follow from equation (3) with the external force F ext
μ (q, ω) turned off. We consider

first the small-q behavior, deferring the finite-q analysis of the longitudinal and transverse
modes to sections 3 and 4. At long wavelengths, the QLCA equations (8) and (9) further
simplify to the longitudinal dipole density oscillation frequency (1) (with �̃D therein replaced
by the classical �D coupling parameter) and to its transverse shear mode counterpart, reported
here for the first time

ω2
T (q → 0) = 3

16ω2
Dq̄2J (�D); (10)

the J (�D) values are computed from equation (2) with input from our MD-generated g(r)

data. Independently of �D , we observe that the transverse phase velocity corresponding to
equation (10) is 1/11th times smaller than that corresponding to equation (1). Equations (1)
and (10) can be identified as the QLCA in-phase longitudinal and transverse acoustic modes
in the closely spaced EHB [4, 9].

3. Longitudinal collective mode dispersion at finite wave numbers

We turn now to the analysis of the longitudinal collective mode at finite wave numbers.
To further make the case that the classical 2DDS reasonably well emulates the dispersion at
arbitrary degeneracy, we have generated figure 1 which compares our MD-generated dispersion
curve for the classical 2DDS with that from [5], generated from the Feynman relation with
the input of quantum MC static structure factor data for the zero-temperature bosonic dipole
system. In making the comparison, we invoke the reasonable correspondence �D ⇔ rD based
on the correspondence of the average kinetic energies, kT ⇔ h̄2/ma2.

While it is true that the Feynman excitation spectrum constitutes only an upper bound
to the actual collective mode dispersion, we can nevertheless note the remarkable agreement
between the two sets of data in the strong coupling regime. This agreement becomes somewhat
less satisfactory with decreasing coupling. We believe that the agreement at the lower wave
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Figure 1. (Color online.) Longitudinal collective mode dispersion curves generated from classical
molecular dynamics (MD) simulations (�) at �D = 30 and from the reference [5] quantum Monte
Carlo (MC) simulations (•) at rD = 28.36.

numbers would be better were it not for possible inaccuracies in the input S(q → 0) data in
[5].

We have evaluated equations (6) and (8) with the input of g(r) data generated from our
MD simulations carried out at �D = 15. The resulting dispersion curve is displayed in
figure 2. The extended QLCA (eQLCA) curve is generated from the dispersion relation [9]

1 − m

nq2
CL(q)χ0(q, ω) = 0, (11)

where the familiar Vlasov density response function

χ0(q, ω) = − 1

m

∫
d2v

q · ∂F (0)(v)/∂v
ω − q · v

(12)

quite naturally emerges in the formalism if one takes account of the effects of random
thermal motions of the dipoles [12]. In the zero-temperature classical domain, we note that
χ0(q, ω) = −nq2/mω2, so that in this limit, equations (8) and (11) become one and the same.
Figure 2 indicates that the QLCA and eQLCA dispersion curves are in excellent agreement
with the MD-generated dispersion curves for qa � 2. Beyond qa = 2, the agreement between
theory and simulations is less satisfactory, with the QLCA devoid of RPA-like thermal effects
emerging as the better of the two theoretical descriptions—at least up to qa ∼ 4.5. The fact
that the roton minimum emerges as a result of strong correlations and can be identified from
purely classical considerations is remarkable; in fact, it was already emphasized some time
ago as an alternate explanation by Nozieres [13].

4. Transverse shear mode dispersion

By now it is well documented that charged-particle systems in the strongly coupled liquid
phase can support transverse shear waves [10, 14–26]. This is borne out by numerous MD
simulations [14, 15, 18, 19, 21, 23] and by recent laboratory experiments on 2D complex
plasmas [26].
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Figure 2. (Color online.) Longitudinal collective mode dispersion curves generated from classical
molecular dynamics (MD) simulations (�) at �D = 15 and from QLCA (solid line) equations (6)
and (8) and eQLCA (dashed line) equations (6), (11) and (12) with the input of MD-generated g(r)

data.

Figure 3. (Color online.) Transverse shear mode dispersion curves generated from classical
molecular dynamics (MD) simulations (�) at �D = 50 and from QLCA (solid line) equations (7)
and (9) with the input of MD-generated g(r) data.

We have generated transverse current correlation spectra from MD simulations of the
2DDS in its strongly coupled liquid phase. The dispersion curve that results is displayed in
figure 3, alongside the corresponding QLCA dispersion curve calculated from equations (7)
and (9) (no thermal correction is warranted at this high � value), with the input of our MD-
generated g(r) data. Not surprisingly, our preliminary calculations indicate that agreement
between theory and simulation becomes more and more satisfactory with increasing coupling
strength. With J (�D = 50) = 0.825 (taken from table II of [9]b), one can readily verify that
the phase velocity in the acoustic regime of figure 3 is well reproduced by equation (10).
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The MD data show the emergence of a sharp cutoff ω → 0 for a finite q. Its existence
has also been observed in Yukawa systems [21, 25] and in the in-phase modes of unipolar
charged-particle bilayers [18] and electron–hole bilayers [4]. While comparison with the
QLCA does show agreement as far as the linear acoustic dispersion is concerned, the QLCA,
because it does not take account of damping in the formalism, nevertheless fails to predict this
conspicuous finite-q cutoff in the shear mode oscillation frequency.

5. Conclusions

This paper presents an analysis of the collective mode dispersion of a classical two-dimensional
dipole system (2DDS) in the strongly coupled liquid phase. The theoretical calculations are
based on the quasi-localized charge approximation (QLCA) [10]; as we have emphasized in
the introduction, the application of a non-perturbative method such as the QLCA is required
for the theoretical treatment of the 2DDS for which no RPA description of the system exists.
Our theoretical calculations are complemented by molecular dynamics (MD) simulations. The
analysis of this paper extends our recent study [9] of the longitudinal mode at long wavelengths
to the finite wave number domain. There we confirmed that the longitudinal dipole oscillation
mode in the q → 0 limit exhibits an acoustic behavior and demonstrated that equation (1)
describes the acoustic dispersion over the entire classical to quantum domains all the way
down to zero temperature. The near-perfect agreement between equation (1) with (2) and our
MD dispersion data [9] attests to the accuracy of the QLCA description. This point is further
underscored in [9] by the close agreement between the acoustic phase velocities calculated
from equation (1) and the thermodynamic sound speeds in the classical and quantum domains.

In the present work, focusing on the finite-q behavior of the dispersion, we observe the
closeness between our MD-generated longitudinal dispersion curve for the classical 2DDS
and that of [5] generated from the Feynman relation with the input of quantum MC static
structure factor data. Quite remarkably, this close resemblance persists for wave numbers q
extending beyond the roton minimum qa ≈ 3.6, suggesting that the roton minimum has a
classical origin, rooted in the strong correlations prevailing in the system.

For high �D values both the QLCA calculations and the MD simulations reveal the
existence of a shear mode. The MD-generated dispersion, however, shows the ubiquitous
sharp finite-qa ∼ 0.3, ω = 0 cutoff observed as well in the Yukawa systems [21, 25] and in
electronic bilayers [4, 18]. Below this q value, the shear mode ceases to exist, since the liquid
phase cannot support shear in the long-wavelength limit.
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